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Abstract

The major goal of this paper is to demonstrate the following conclusion:

Allow U  to be a non-zero square closed Lie ideal of a 2-torsion free prime ring R  , 
and  f  to be a generalized ( ) ,U R − derivation of R . If f  acts as a homomorphism 
and as an anti-homomorphism on  U , then either 0f =  or ( ) .U Z R⊂
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Introduction

In the year 1950s I. N. Herstein [9] pioneered research into the 
relationship between the Jordan and Lie structure of associative rings.

Herstein [10] showed a classic finding in this direction in 1957, which 
served as a jumping off point for many other researchers.

The relationship between usual derivations and Lie ideals of prime 
rings has been extensively studied in the last 30 years, in particular, 
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when this relationship involves the action of the derivation on Lie 
ideals.

R. Awtar[3] extended the Herstein’s theorem to Lie ideals. He proved 
that if  U  is a Lie ideal of a prime ring  R  of characteristic changedfrom 
2 such that 2  u U∈ , for each  u U∈  and :d R R→  is an additive mapping 
such that d  is a Jordan derivation on U  then d  is a derivation on U .

The notion of generalized derivations on a ring R  which was introduced 
by Bresar [6] is connected to a derivation of  R . In [13], without applying 
derivations, Nakajima established another form of generalized 
derivations and offered categorical features to those generalized 
derivations. When R has an identity element, these two concepts are 
congruent. Nakajima’s [13] results were extended to generalized Jordan 
and Lie derivations..L. Oukhtite, S. Salhi and L. Taofiq[14] studied 
Jordan generalized derivations on sigma- prime rings and proved that 
every Jordan generalized derivation on a Lie ideal U  of sigma- prime 
ring R  is a generalized derivation on U  of R .

Lately, Ashraf and Rehman [1] looked into the Herstein[10] problem 
for a Jordan generalized derivation. They proved that any Jordan 
generalized derivation on R is a generalized derivation in a 2-torsion-
free ring R with a nonzero commentator divisor.

Well along, Cortes and Haetinger [7] refined Ashraf’s theorem to higher 
derivations in general. They established that every Jordan generalized 
higher derivation on R is a generalized higher derivation if R is a 
2-torsion-free ring with a commentator right nonzero divisor.

( ), U R -derivations in rings have been presented by Faraz, Haetinger 
and Majeed[8]as a simplification of Jordan derivations on a Lie ideal of 
a ring. Faraj, Haetinger and Majeed [8] showed that if R  is a prime 
ring, ( ) 2,  char R U≠  a square closed Lie ideal of R  and d  is a ( ), U R
-derivation of R , then ( ) ( ) ( ) , , , .d ur d u r ud r u U r R= + ∀ ∈ ∈  This result 
is a generalization of a result of Awtar’s [3] theorem. M. M. Rahman 
and A. C. Paul[16] have introduced ( ), U M  derivation and general 
( ), U M  derivation in Γ  ring and generalized the main theorems of 
Faraz, Haetinger and Majeed[8].

Preliminaries
Let us study R  to be an associative ring with center ( )Z R  through the 
project.A ring R  is believed to be 2-torsion free if 2 0x =  with x R∈ , 
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formerly 0x = . A ring R  is called a prime ring if for any 0, ,  x y R xRy∈ =  
implies 0x =  or 0y = . In a ring R , the symbol [ ],x y  is known as the 
commutator of  x  and y , which is defined by [ ],x y xy yx= − , where 

,x y R∈ . Two useful basic commutator identities are:

[ ] [ ] [ ], , ,xy z x y z x z y= +  and [ ] [ ] [ ], , ,x yz y x z x y z= + .

An additive subgroup  U  of R  is said to be a Lie ideal of R  if [ ],u r U∈  
for all u U∈  and r R∈ . A Lie ideal U  of R  is called a square closed Lie 
ideal if 2u U∈  for all u U∈ . Furthermore, if the Lie ideal U  of R  is 
square closed and  U  is not contained in ( ) ,Z R  where ( )Z R  denotes 
the center of ,R  then  U  is called an admissible Lie ideal of .R

An additive mapping  : d R R→  is said to be a derivation if 
( ) ( ) ( )d xy d x y yd x= +  for all ,x y R∈ . An additive mapping  :f R R→  

is called a generalized derivation if there exists a derivation  :d R R→  
such that ( ) ( ) ( )f xy f x y yd x= +  holds for all ,x y R∈ .

An additive mapping  :d R R→  is said to be a Jordan derivation if 
( ) ( ) ( )2  d x d x x xd x= +  for all x R∈  and it is called a Jordan triple 

derivation if ( ) ( ) ( ) ( )d xyx d x yx xd y x xyd x= + +  for all ,x y R∈ .

An additive mapping  :d R R→  is said to be a ( ),  U R -derivation of R  
if ( ) ( ) ( ) ( ) ( )           ,     &  ,  ,   d u r su d u r u d r d s u s d u u U r s R U+ = + + + ∀ ∈ ∀ ∈  is a 
Lie ideal of .R

An additive mapping  :f R R→  is said to be a generalized ( ), U R
-derivation of R  if there exists a ( ), U R - derivation d  of R  such that 
( ) ( ) ( ) ( ) ( )f ur su f u r ud r f s u sd u+ = + + + , for all ,   , u U r s R∈ ∀ ∈ .

Let S  be a non-empty subset of R  and f  is a generalized derivation of 
.R  If ( ) ( ) ( )f xy f x f y=  [resp. ( ) ( ) ( )f xy f y f x= ] for all ,  x y S∈ , then 

f  is said to act as a homomorphism [resp. as an anti-homomorphism] 
on  .S

A mapping  : R Rσ →  is called an involution if 
( ) ( ) ( ) ( ) ( ) ( ) ( )2,  , a b a b a a ab b aσ σ σ σ σ σ σ+ = + = =  holds for all 
,  .a b R∈  A Lie ideal U  of R  is called a σ -Lie ideal if ( )U Uσ =  and it 

is called a σ -square closed Lie ideal if it is a σ -Lie ideal and for all 
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u U∈  implies 2 .u U∈  A ring R  with involution σ  is said to be a 
σ ‌ ‑prime ring if ( ) { }0aRb aR bσ= =  implies that 0 0  a or b= = . It is 
worthwhile to note that every prime ring having an involution σ - is 
σ ‌ - prime but the converse is not true in general.

Bresar [6] developed the concept of generalized derivation, and B. 
Hvala [11] and T. K. Lee [12] derived numerous characterizations of 
generalized derivation. Bell and Kappe show in [4] that if a derivation 
is both a homomorphism and an anti-homomorphism on a prime ring 
R’s non-zero ideal I, then d=0. This conclusion is extended to a square 
closed Lie ideal by Asma, Rehman, and Shakir [2], while Rehman [17] 
establishes the same result for generalized derivations. Using similar 
ideas, Paul and Chakraborty [15] expand the main result to the square 
closed Lie ideal.

In this paper, wespread the key result of previous workers [2, 4, 15, 17] 
to square closed Lie ideal with ( ),U R -derivation of R  by using the 
similar arguments.

( )U , R  Derivation
By demonstrating that if R is a prime ring, char ( ) 2 R ≠ , U  is a square 
closed ring, Faraj, C. Haetinger, and H. Majed [8] familiarize and learn 
the notion of (U, R)-derivation. If R is the Lie ideal and d is a ( ),U R
-derivation of R, then ( ) ( ) ( ) ,d ur d u r ud r= +  for all ,u U r R∈ ∈ , 
extending Awtar’s result ([3, Theorem]).

Definition: Suppose U  be a Lie ideal of a ring  vR . An additive 
mapping :d R R→  is thought to be a ( ), U R - derivation ( ( ), ,U R D−  
for short) of R  if ( ) ( ) ( ) ( ) ( )d ur su d u r ud r d s u sd u+ = + + + , for all 

, , u U r s R∈ ∀ ∈ .

Example. Let R be a ring of all 2×2 matrices over a commutative ring 
S. Let

	 : , ,
a b

U a b c S
c a

   = ∈  −   

Then U is a Lie ideal of R. Define :d R R→  by 
0

0
a b b

d
c d c

  −   
=    

    
 

for all 
a b

R
c d
 

∈ 
 
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Then d  is a ( ),  U R  derivation.

Let U
a b

u
c a
 

= ∈ − 
 R

x y
r

z w
 

= ∈ 
 

 R
p q

s
r t

 
= ∈ 
 

 

Then ( ) 
ax bz pa qc ay bw pb qa

d ur su d
cx az ra tc rb ta
+ + + + + − 

+ =  − + + − 

	

0
0

ay bw pb qa
cx az ra tc

− − − + 
=  − + + 

and ( ) ( ) ( ) ( ) d u r ud r d s u sd u+ + + =

0 0 0 0 0
0 0 0 0 0

 
b x y a b y q q a b p q b

c z w c a z z r c a r t c
− − − − −                

+ + + +                − −                

	

    
   

bz bz qc qc bw ay qa pb
cx az ra tc cy cy rb rb
− + − + − − + − 

=  − + + − + − 

	

0
0

  
ay bw qu qb

cx az ra tc
− − + − 

=  − + + 

Thus ( ) ( ) ( ) ( ) ( )d ur su d u r ud r d s u sd u+ = + + + , for all , , u U r s R∈ ∀ ∈  . 
So d  is a ( ),  U R −  derivation.

We need the following Lemmas due to Faraj, C. Haetinger and H. 
Majed [8] for proving our results.

Lemma 3.1: Faraj, C. Haetinger and H. Majed [8]. Assume R  is a 
2-torsion-free ring with d  being ( ),U R D−  of R. Then 
( ) ( ) ( ) ( )d uru d u ru ud r u urd u= + + , for all u U  r R, .∈ ∈

Lemma 3.2: Faraj, C. Haetinger and H. Majed [8]. Assume R is a prime 
ring, char ( ) 2R ≠ , and U  is a closed square, R ’s Lie Ideal and d  be 

( ),U R D−  of R .Formerly ( )2u  r 0, = , for all u U  r R,∈ ∈ .

Lemma 3.3: Faraj, C. Haetinger and H. Majed [8]. Suppose that R be a 
prime ring, char ( ) 2R ≠  be a nonzero allowable Lie ideal of R, and U be 
a nonzero admissible Lie ideal of R. Then R’s nonzero ideal is contained 
in U.
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Lemma 3.4: Faraj, C. Haetinger and H. Majed [8]. Suppose that R be a 
prime ring, char ( ) 2,R ≠  and ( )Z RU ⊄  exist Lie Ideal. At that time 

there be elements a b c U, , ∈  such that [ ]a b c abc cba 0, , = − ≠ .

Lemma 3.5: Faraj, C. Haetinger and H. Majed [8]. Assume R is a prime 
ring, char ® 2≠  be a nonzero allowable Lie ideal of R. At that time for 
several 2 2t R  if tv v t 0, ,∈ + =  for all 0,v U t∈ =

Proof: Linearize 2 2 0tv v t+ =  on v , then

	 ( ) ( )2 2 2 2 0t uv v u uv v u t+ + + =

Since 2 2  ,tv v t v U= − ∀ ∈  so the above equation becomes

	 2 2 2 20 tuv v tu utv v tu= − − +

	 ( ) ( )2 2 0tu ut v v tu ut= − − − =  [ ] [ ]2 2 0, , ,or t u v v t u− =

	 [ ] [ ]2 2 0, ,  ,or v t u v t u− − =  [ ]2 0, ,or v t u =  [ ]2 0, ,or v t u =  If we 

linearize 2 0tv =  on v , then ( ) ( ) ( )2 2 20 t u v t u uv vu v t uv vu= + = + + + = +  
( ) ( ) ( )   , , , .uv vu u tuvu tuvut tu v tu u v U t R= + = = = ∀ ∈ ∀ ∈  As U  holds a 

nonzero R ideal, and R  be a prime, so 0tu = .

Inprimness of R , we get 0t = .

Faraj, C. Haetinger and H. Majedextend ([3, Theorem] to ( ), U R  
derivations in the following way:

Theorem 3.1:Assume R  is a 2-torsion-free ring with d  being ( ),U R D−  
of R . Then ( ) ( ) ( ) ( )d uru d u ru ud r u urd u= + + , for all u U  r R, .∈ ∈

Proof. Then d be a ( ),U R  derivation of R .

	 ( ) ( ) ( ) ( ) ( ) .d uur uru d u ur ud ur d ur u urd u+ = + + + � (6)

On the other hand,

	 ( ) ( ) ( )2d uur uru d u r d uru+ = +

	 ( ) ( ) ( ) ( )2  .d u r d u ru ud r u urd u= + + + � (7)

Now by using Lemma 2.4, equation (7) becomes

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2 .

d u r uru d u r u d r d u ru ud r u urd u

d u ur ud u r u d r d u ru ud r u urd u

+ = + + + +

= + + + + + � (8)
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By comparing (6) and (8), we get

	 ( ) ( ) 0, , ,  , .u u r u r u u U r RΦ +Φ = ∀ ∈ ∈ � (9)

By linearizing (9) on ,u  we have

	 ( ) ( ) ( ) ( ) 0, , , , .u v r v u r u r v v r uΦ + Φ +Φ +Φ = � (10)

Replace v  by 2v  in (10), then and there by Lemma 2.4, we get 
( ) ( )2 2 0, , ,v u r u r vΦ +Φ =  for all ,  ,  .u v U r R∈ ∈

Currently, if ( )U Z R⊄  then and there by using Lemma 2.7, we become 
( ) 0, ,u rΦ =  for all  , .u U r R∈ ∈

Generalized ( )U , R  derivaion
By establishing that if R is a prime ring, char ( ) 2 R ≠ , U is a square 
closed Lie ideal of R, Faraj, C. Haetinger, and H. Majed [8] develop and 
analyze the concept of generalized ( ),U R -derivation. then 
( ) ( ) ( ) ,f ur f u r ud r= +  for all ,  .u U r R∈ ∈

Definition: Suppose that, U  be a Lie ideal of a ring R  and f  be an 
additive mapping R  into itself. Then f  is said to be a generalized 
( ), U R -derivation ( ( ), ,G U R D−  for short) of R  if there exists a ( ), U R  - 
derivation d  of R  such that ( ) ( ) ( ) ( ) ( )f ur su f u r ud r f s u sd u+ = + + +  , 
for all ,   , u U r s R∈ ∀ ∈ .

Example. Assume R is a ring containing all 2 2 ×  matrices over a 

commutative ring S . Assume : ,
a b

U a b S
b a

   = ∈  
   

Then U is R’s Lie ideal. Express :f R R→  in 
0

0
a b a

f
c d d

    
=    −    

 for 

all 
a b

R
c d
 

∈ 
 

. Formerly there is a ( ), U R - derivation d  of R  which is 

definite by 
0

0
a b b

d
c d c

  −   
=    

    
 for all 

a b
R

c d
 

∈ 
 

.

Then f  is a derivation of R  that is generalized ( ), .U R

Let U
a b

u
b a
 

= ∈ 
 

 R
x y

r
z w

 
= ∈ 
 

 R
p q

s
r t

 
= ∈ 
 
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 Then ( ) 
ax bz pa qb ay bw pb qa

f ur su f
bx az ra tb by aw br ta
+ + + + + + 

+ =  + + + + + + 

	

0
0

ax bz pa qb
by aw br ta

+ + + 
=  − − − − 

and ( ) ( ) ( ) ( ) f u r ud r f s u sd u+ + + =

0 0 0 0
0 0 0 0

  
a x y a b y p a b p q b

a z w b a z t b a r t b
− −              

+ + +              − −              

	

   
   

ax bz pa qb ay ay pb pb
az az tb tb by aw br ta
+ + + − + − 

=  − + − + − − − − 

	

0
0

  
ax bz pa qb

by aw br ta
+ + + 

=  − − − − 

Thus ( ) ( ) ( ) ( ) ( )f ur su f u r ud r f s u sd u+ = + + + , for all 
,   , u U r s R∈ ∀ ∈  . So, f  is a generalized ( ),  U R derivation of R .

Lemma 4.1 [5, Lemma 4]. Consider R to be a prime ring. char ( ) 2R ≠  
Then U  is a R ’s Lie ideal, ( )U Z R⊄  Uncertainty ,a b R∈  then 0aUb =  
then either 0 0  .a or b= =

Remark: If f  is a generalized ( ),U R  derivation of R  for each
 ,u U r R∈ ∈  authors signify ( ),  u rδ  the part of R  definite in 

( ) ( ) ( ),  ,u r f u r ud rδ = +  for all ,  .u U r R∈ ∈

Lemma 4.2:Consider R to be a prime ring, ( ) 2char R ≠ , U is a allowable 
Lie ideal of R  and f  be a general ( ),U R derivation of R . Formerly 
( ) 0, u vδ = , for all , .u v U∈

Theorem 4.1. Consider R to be a prime ring, ( ) 2,   char R U≠ is a square 
secure Lie ideal of R  and f  be a generalized ( ), U R  derivation of R . 
Formerly ( ) ( ) ( ) ,f ur f u r ud r= +  for all ,  .u U r R∈ ∈

Proof. Since above Lemma 4.2then the previous Statement, we have

	 ( ) 0, ,     , .u v u v Uδ = ∀ ∈ � (1)

Replacing v  by ur ru−  in (1), then we get
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	 ( )0 , u ur ruδ= −

	 ( ) ( ) ( ) ( ) ( )2 .f u r f uru f u ur ru ud ur ru= − − − − −

Since d  be a ( ), U R  derivation of R , so

	 ( ) ( ) ( ) ( )2 2f u r f u ur ud u r u d r= + + � (2)

Now, let .x uur uru= +  Then in the characterization of general ( ),U R  

derivation of R , ( ) ( ) ( ) ( ) ( )f x f u ur ud ur f ur u urd u= + + +

	 ( ) ( ) ( ) ( ) ( )2 f u ur ud u r u d r f ur u urd u= + + + + � (3)

On the other hand, we have

	 ( ) ( ) ( )2f x f u r f uru= +

	 ( ) ( ) ( ) ( ) ( ) ( )2 f u ur ud u r u d r f u ru ud r u urd u= + + + + + � (4)

Comparing (3) and (4), we get

	 ( ) 0, ,    , .u r u u U r Rδ = ∀ ∈ ∈ � (5)

Linearizing (5) on u , we get

	 ( ) ( ) 0, , .u r v v r uδ δ+ = � (6)

Replace v  by 2v  in (6).

Since ( )2 0, , u rδ =  then

	 ( ) 2 0, ,   , , .u r v u v U r Rδ = ∀ ∈ ∈ � (7)

Uncertainty U  is a significant Lie ideal;formerly ( ) 0, ,u rδ =  for all 
,  .u U r R∈ ∈  Uncertainty U  is non central, then change v  by u v+  now 

equality (7) to become ( ) 0, ,u r vuδ =  for all , , .u v U r R∈ ∈

Since U  benon-centrally, then and there ( ) 0, ,u rδ =  for all , .u U r R∈ ∈

Main Results
We now apply the basic conclusion of [15] to the square closed Lie 
ideal, using a generalized (U, R)-derivation of R. The next two lemmas 
(already established) are required to achieve the chosen results.
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Lemma 5.1 (J. Bergun, I. N. Herstein and J. W. Kerr[5], Lemma 4) 
Suppose that ( )Z RU ⊄  is a Lie ideal of a 2-torsion allowed prime ring 
R  then ,a b R∈  such that 0aUb = , at that point 0a =  or 0b = .

Lemma 5.2 (J.Bergun, I. N. Herstein and J. W. Kerr [5], Lemma 5) 
Assume 0U ≠  is a Lie ideal of a 2-torsion allowed prime ring R  then 

0d ≠  a derivation of R  such that ( ) 0d U = . At that point ( ) U Z R⊂ .

The next suitable outcome plays asignificant part to influence the 
objective.

Lemma 5.3 Uncertainty 0U ≠  be a Lie ideal of a 2-torsion allowed 
prime ring R  such that [ ] 0,U U = , at that point ( )  U Z R⊂ .

Proof: For all    u U and x R∈ ∈ , we require

	 [ ] 0, ,u u x  =  � (1)

Replacing x  by xy  with y R∈ , we obtain

	 [ ] [ ]0 , , ,u x u y u x y = + 

	 [ ] [ ] [ ] [ ], , , , , , [ , ]x u u y u x u y u x u y u u x y   = + + +   

	 [ ]2 , , ]u x u y=

Then R  be 2-torsion free, we become

	 [ ] 0, , ]u x u y = � (2)

Such that u U∈  also , .x y R∈

Placing yz  used for y  in (2) with  z R∈ , then by (2), we get

	 [ ] [ ] 0, ,      , ,u x y u z for all u U and x y z R= ∈ ∈ .

Thus, we have [ ] [ ] 0, ,u x R u z =

So, [ ]0 0, ]   ,u x or u z= =  i.e u U∈  also ,x z R∈  (in the primness of R ).

Now equally the cases, we get that ( ) .U Z R⊂

We may now demonstrate our major finding in the following manner.

Theorem: Condition 0U ≠  is a closed square Lie ideal of a 2-torsion 
free prime ring R  then  f  is a comprehensive ( ),U R -derivation of R , 
at that point
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(i)	 f  Actions as per a homomorphism proceeding U ⇒  either 0f =  
or ( )U Z R⊂ .

(ii)	 f  actions as per an anti-homomorphism proceeding U ⇒  either 
0f =  or ( ) .U Z R⊂

Proof: There exists a ( ),U R -derivation d  of R  such that f  is a 
generalized ( ),U R -derivation of a 2-torsion free prime ring R , where 
U  is a square closed Lie ideal of R .

( ) ( ) ( ) ,f ur f u r ud r= +  for all ,  u U r R∈ ∈ � (1)

and ( ) ( ) ( ) ,d ur d u r ud r= +  for all , u U r R∈ ∈  � (2)

Replacing r  and s  by ( ) ( )2 2u r r u+  in (1), and denote w  by 
( ) ( )( ) ( ) ( )( )2 2 2 2u u r r u u r r u u+ + + , then

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

2 2 2 2

2

2

2

(

( (

f w f u u r r u u r r u u

f u ur ru ud ur ru u f ur ru u ur ru d u

f u ur ru u d u r ud r d r u ud u

f u r ud r f r u rd u u ur ru d u

= + + +

= + + + + + + +

= + + + + + +

+ + + + +

On the other hand

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

2 2

2 2 2 2

2 2

2 2 2 2

2 2 4

2 2 2 2 4

2 4

f w f u u r r u u r r u u

f u r r u f uru

f u r u d r f r u rd u f uru

f u ur ud u r u d r f r u rud u rd u u f uru

= + + +

= + +

= + + + +

= + + + + + +

Comparing above two relations and Using R’s 2 torsion freeness, we 
become

	 ( ) ( ) ( ) ( )f uru f u ru ud r u urd u= + + � (3)

Now linearizing (3) with respect u , we get

( ) ( ) ( ) ( ) ( ) ( ) ( ) f urv vru f u rv ud r v urd v f v ru vd r u vrd u+ = + + + + + � (4)

Let ( )4   ,x uvwvu vuwuv= +  then by (3)

	 ( ) ( ) ( ) ( ) ( )( )2 2 2 2f x f uv w vu vu w uv= +
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� � � � � � � � � �� � � � � �
� � � � � � �
f uv w vu uv d w vu uvwd vu

f vu w uv vu

2 2 2 2 2 2

2 2 2 dd w uv vuwd uv� �� � � � �2 2 2

On the other hand,

	 ( ) ( ) ( ) ( ) ( )( )2 2 2 2f x f uv w vu vu w uv= +

	 ( )( )4 4( )f u vwv u v uwu v= +

	

( )( ) ( ) ( ) ( )( )
( ) ( )

4 4 4 4

4 4 .

f u vwvu ud vwv u uvwvd u f v uwuv

vd uwu v vuwud v

= + + + +

+

Comparing the exact sides of ( )f x  and then d  is a ( ), U R  derivation 
of ,R  thus

	

( ) ( ) ( ) ( )( )
( ) [ ] [ ] ( )( )

0 4

4

, , , ,

, , , ,

u v wvu v u wuv uvw v u vuw u v

u v w u v u v w u v

δ δ

δ

= + + Φ + Φ

= + Φ

Then  R  be a 2-torsion-free and through Theorem 3.1, we need 
( ) [ ] 0, , .u v w u vδ =  then U  be a non-centrally Lie ideal, at that point by 

Lemma 4.1,

( ) 0, ,u vδ =  for all , .u v U∈

Replacing v  by ur ru−  in ( ) 0, ,u vδ =  we get

	 ( )0 , u ur ruδ= −

	 ( ) ( ) ( ) ( ) ( )2 .f u r f uru f u ur ru ud ur ru= − − − − −

Since d  be a ( ), U R  derivation of R , so

( ) ( ) ( ) ( )2 2f u r f u ur ud u r u d r= + +

Now, let .x uur uru= +  Then by the definition of generalized ( ),U R  
derivation of R , ( ) ( ) ( ) ( ) ( )f x f u ur ud ur f ur u urd u= + + +

	 ( ) ( ) ( ) ( ) ( )2 f u ur ud u r u d r f ur u urd u= + + + +
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On the other hand, we have

	 ( ) ( ) ( )2f x f u r f uru= +

	 ( ) ( ) ( ) ( ) ( ) ( )2     f u ur ud u r u d r f u ru ud r u urd u= + + + + +

Comparing right hand sides of ( )f x , we get

	 ( ) 0, ,     ,   u r u u U r Rδ = ∀ ∈ ∈

Linearizing with respect to u , we get ( ) ( ) 0, ,  u r v v r uδ δ+ =

Replace v  by 2v

Then ( )2 0, , u rδ =  at that point

	 ( ) 2 0, ,   , ,  u r v u v U r Rδ = ∀ ∈ ∈

Uncertainty U  is an essential Lie ideal, then ( ) 0, ,u rδ =  for all 
,  .u U r R∈ ∈  If U  is non central, then change v  by u v+  to get

( ) 0, ,u r vuδ =  for all , , .u v U r R∈ ∈

Since U  is non-central, then ( ) 0, ,u rδ =  for all , u U r R∈ ∈  and 
consequently ( ) ( ) ( ) ,f ur f u r ud r= +  for all ,  .u U r R∈ ∈

If U  is not contained in ( )Z R  then ( )U Z R⊄

Then U  be a square closed Lie ideal, we need

	 ( ) ( ) 2 2    , .uv vu u v u v u v U for all u v U+ = + + − − ∈ ∈

Also, we get   , ,uv vu U for all u v U− ∈ ∈ .

So, 2uv U∈  for all ,u v U∈ .

Thus, ( ) ( )4 2 2uvw uv w U= ∈  for all , ,u v w U∈ .

If f  actions as per a homomorphism on U , at that point we get

	 ( ) ( )( ) ( ) ( )4 2 2 4 4f uvw f uv w f uv w uvd w= = +

	 ( ) ( ) ( )( )4 ,f u f v w uvd w= +  for all , ,u v w U∈ � (5)

On the other hand,

	 ( ) ( ) ( ) ( )4 2 2 4))f uvw f u vw f u f vw= =
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( ) ( ) ( ) ( )( )4                   ,  , ,f u f v w f u vd w u v w U= + ∀ ∈ � (6)

When we multiply (5) and (6) by R’s 2-torsion freeness, we become

( ) ( ) ( )f u vd w uvd w= ,

Then it becomes

	 ( )( ) ( ) 0f u u vd w− = ,  , ,u v w U∀ ∈ .

Thus, we have ( )( ) ( ) 0f u u Ud w− =  for all ,u w U∈ .

Now opinion of Lemma 5.1, we achieve that

	 ( ) 0f u u− =  for all  u U∈  or ( ) 0d w =  for all w U∈

If ( ) 0d w =  for all w U∈ , at that point by Lemma 5.2, we need 0d =  or 
( )U Z R⊂ .

Since ( )U Z R⊄ , we get 0.d =

On the other hand, if ( ) 0 f u u− =  for all u U∈ , then we have

( ) ,   f u u u U= ∀ ∈ .

Replacing u  by 2uv  for v U∈  and using the 2-torsion freeness of R , we 
get

( ) ( ) ( ) ( )uv f uv f u v ud v uv ud v= = + = +  for all ,u v U∈ .

So, we need ( ) 0ud v =  for all ,u v U∈ .Consequently, ( ) 0Ud v =  for all 
v U∈ .

Then [ ],U R U⊂ , we get [ ] ( ) 0,U R d v =  for all v U∈ .

So, ( ) 0URd v =  for all v U∈ .

As 0U ≠  and R  is a prime ring, we have ( ) 0d v =  for all v U∈ .

Thus, by Lemma 5.2, we get ( )U Z R⊂ .

Let us suppose the f  acts as an anti-homomorphism on U . Then we 
have

	 ( ) ( ) ( ) ( ) ( ) ,  ,  f u v ud v f v f u f uv u v U+ = = ∀ ∈ � (7)

We get (7) by substituting 2uv for u in (7) and using (7).

	 ( ) ( ) ( )uvd v f v ud v= ,   ,  u v U∀ ∈ � (8)

Substituting 2 wu  for u  in (8), we get
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( ) ( ) ( )wuvd v f v wud v= ,  ,  u v U∀ ∈

Multiplying (8) by w  on the left, we have

( ) ( ) ( )wuvd v wf v ud v= , for all ,  u v U∈

Comparing above two relations, we get

( ) ( ) 0,w f v ud v  =  ,   ,  u v U∀ ∈

Now opinion of Lemma 5.1, we become

	 ( ) ( )0 0,    ,      w f v for all v w U or d v for all v U  = ∈ = ∈  .

If ( ) 0d v =  for all  v U∈ , at that point by Lemma 5.2, we invention 

0d =  or ( )U Z R⊂ , and therefore 0d = . Then ( )U Z R⊄

On the other hand, if ( ) 0,w f v  = 
For all ,  u v U∈ , then changing v  by 2vw , we need

	 ( ) [ ] ( ) 0, ,v w d w w v d w  + =  ,  ,  u v U∀ ∈

Again, substituting 2uv  for ,v U∈  and by 2-torsion freeness of  R , we 
become

	 ( ) [ ] ( )0 , ,uv w d w w uv d w = + 

	 ( ) [ ] ( ) [ ] ( ), , ,uv w d w u w v d w w u vd w = + + 

	 ( ) [ ] ( )( ) [ ] ( ), , ,u v w d w w v d w w u vd w = + +  [ ] ( ),w u vd w=

Thus, we obtain [ ] ( ) 0,w u Ud w = ,   ,  u v U∀ ∈

Applying Lemma 5.1, we find that

( ) [ ]0 0,                 ,  ,   ,d w w U or w u u w U= ∀ ∈ = ∈

If [ ] 0,w u =  for all ,u w U∈ , In the opinion of Lemma 5.3, at that point, 
it follows that ( )U Z R⊂ , which is a conflict to the fact that ( )U Z R⊄ . 
Thus, we need ( ) 0 ,   d w w U= ∀ ∈ .

Inby Lemma 5.2, we have ( )0    d orU Z R= ⊂ .

Then ( )  U Z R⊄ , we complete that 0d = .

As a result, if 0 U ≠  is the square closed Lie ideal of a 2-torsion free 
prime ring , R  and  f  is the generalized ( ),U R -derivation of  R ,
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(i)	 f  Actions as per a homomorphism proceeding U ⇒  either 0f =  
or ( )U Z R⊂ .

(ii)	 f  actions as per an anti-homomorphism proceeding U ⇒  either 
one 0f =  or ( ) .U Z R⊂
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