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Abstract

The major goal of this paper is to demonstrate the following conclusion:

Allow U to be a non-zero square closed Lie ideal of a 2-torsion free prime ring R ,
and f tobeageneralized (U,R)—-derivation of R.If f acts as a homomorphism

and as an anti-homomorphism on U, then either f=0 or U c Z(R).
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Introduction

In the year 1950s I. N. Herstein [9] pioneered research into the
relationship between the Jordan and Lie structure of associative rings.

Herstein [10] showed a classic finding in this direction in 1957, which
served as a jumping off point for many other researchers.

The relationship between usual derivations and Lie ideals of prime
rings has been extensively studied in the last 30 years, in particular,
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when this relationship involves the action of the derivation on Lie
ideals.

R. Awtar[3] extended the Herstein’s theorem to Lie ideals. He proved
thatif U isa Lieideal of a prime ring R of characteristic changedfrom
2 such that u” €U, for each u €U and d : R — R is an additive mapping
such thatd is a Jordan derivation on U then d is a derivation on U .

The notion of generalized derivations on aring R which was introduced
by Bresar [6] is connected to a derivation of R.In[13], withoutapplying
derivations, Nakajima established another form of generalized
derivations and offered categorical features to those generalized
derivations. When R has an identity element, these two concepts are
congruent. Nakajima’s [13] results were extended to generalized Jordan
and Lie derivations..L. Oukhtite, S. Salhi and L. Taofiq[14] studied
Jordan generalized derivations on sigma- prime rings and proved that
every Jordan generalized derivation on a Lie ideal U of sigma- prime
ring R is a generalized derivationon U of R.

Lately, Ashraf and Rehman [1] looked into the Herstein[10] problem
for a Jordan generalized derivation. They proved that any Jordan
generalized derivation on R is a generalized derivation in a 2-torsion-
free ring R with a nonzero commentator divisor.

Well along, Cortes and Haetinger [7] refined Ashraf’s theorem to higher
derivations in general. They established that every Jordan generalized
higher derivation on R is a generalized higher derivation if R is a
2-torsion-free ring with a commentator right nonzero divisor.

(U, R)-derivations in rings have been presented by Faraz, Haetinger

and Majeed[8]as a simplification of Jordan derivations on a Lie ideal of
a ring. Faraj, Haetinger and Majeed [8] showed that if R is a prime
ring, char(R) #2,U a square closed Lie ideal of R and d is a (U ,R)

-derivation of R, then d (ur) =d (u)r +ud (r),v,u eU,r e R. This result

is a generalization of a result of Awtar’s [3] theorem. M. M. Rahman
and A. C. Paul[16] have introduced (U,M) derivation and general

(U,M) derivation in T ring and generalized the main theorems of
Faraz, Haetinger and Majeed|8].

Preliminaries

Let us study R to be an associative ring with center Z(R) through the
project.A ring R is believed to be 2-torsion free if 2x=0 with xeR,
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formerly x =0.Aring R is called a primeringif forany x,y € R, xRy =0
implies x=0 or y=0.1In a ring R, the symbol [x,7] is known as the
commutator of x and y, which is defined by [x,]=xy—yx, where
x,y € R. Two useful basic commutator identities are:

[xy,z] =x[y,z]+ [x,z]y and [x,yz]zy[x,z]+[x,y]z_

An additive subgroup U of R is said to be a Lie ideal of R if [u,r]eU

forall ueU and reR. ALieideal U of R is called a square closed Lie
ideal if u* €U for all u €U . Furthermore, if the Lie ideal U of R is
square closed and U is not contained in Z(R), whereZ(R) denotes

the center of R, then U is called an admissible Lie ideal of R.

An additive mapping d :R—>R is said to be a derivation if
d(xy)=d(x)y+yd(x) forall x,y e R.An additive mapping f : R — R
is called a generalized derivation if there exists a derivation d : R — R
such that f(xy)= f(x)y+ yd(x) holds forall x,yeR.

An additive mapping d : R— R is said to be a Jordan derivation if
d (XZ ) =d (x)x +xd (x) for all xeR and it is called a Jordan triple
derivation if d (xyx)=d (x)yx+xd (y)x+xyd(x) forall x,yeR.

An additive mapping d : R — R is said to be a (U, R)-derivation of R
if d(ur+su) =d(u)r+ud(r) +d(s)u+sd(u),Vu eU &Vr,seR,U isa
Lie ideal of R.

An additive mapping f :R—> R is said to be a generalized (U,R)
-derivation of R if there exists a (U,R)- derivation d of R such that
f(ur+su)=f(u)r+ud(r)+f(s)u+sd(u),for allueU,V r,seRr,
Let S be a non-empty subset of R and f is a generalized derivation of
R If f(xp)=f(x)f(») [resp. S (x)=f(y)f(x)]forall x,yeS, then
S is said to act as a homomorphism [resp. as an anti-homomorphism]
on S.

A mapping o©:R—>R is called an involution if
O'(a + b) = O'(a) + 0(1)),0‘2 (a) =q ,O'(ab) = O'(b)O'(a) holds for all
a,beR. A Lieideal U of R is called a 0 -Lie ideal if o(U)=U and it
is called a o-square closed Lie ideal if it is a o -Lie ideal and for all
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ueU implies u’ €U. A ring R with involution o is said to be a
o -prime ring if aRb=aRo(b)={0} implies that a=00rb=0. Tt is
worthwhile to note that every prime ring having an involution o - is
o - prime but the converse is not true in general.

Bresar [6] developed the concept of generalized derivation, and B.
Hvala [11] and T. K. Lee [12] derived numerous characterizations of
generalized derivation. Bell and Kappe show in [4] that if a derivation
is both a homomorphism and an anti-homomorphism on a prime ring
R’s non-zero ideal I, then d=0. This conclusion is extended to a square
closed Lie ideal by Asma, Rehman, and Shakir [2], while Rehman [17]
establishes the same result for generalized derivations. Using similar
ideas, Paul and Chakraborty [15] expand the main result to the square
closed Lie ideal.

In this paper, wespread the key result of previous workers [2, 4, 15, 17]
to square closed Lie ideal with (U,R)-derivation of R by using the

similar arguments.

(U, R) Derivation
By demonstrating that if R is a prime ring, Char(R) #2, U is a square

closed ring, Faraj, C. Haetinger, and H. Majed [8] familiarize and learn
the notion of (U, R)-derivation. If R is the Lie ideal and d is a (U,R)

-derivation of R, then d(ur)=d(u)r+ud(r), for all ueU,rek,
extending Awtar’s result ([3, Theoremy]).

Definition: Suppose U be a Lie ideal of a ring vR. An additive
mapping d : R— R is thought to be a (U,R)- derivation ((U,R)-D,
for short) of R if d(ur + su) = d(u)r + ud(r) +d (s)u + sd (u), for all
ueU,Vr,seR

Example. Let R be a ring of all 2x2 matrices over a commutative ring
S. Let

U:{[a bJ:a,b,ceS}
c -a

b 0 -b
Then U is a Lie ideal of R. Define d : R— R by d([a D :( J

c d c 0
for all (a b]eR
d

C
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Then d isa (U, R) derivation.

b
Letuz[a ]EU rz(x yJeR s=(p qjeR
c -a z w r ot

ax+ bz + pa+ qc ay+bw+pb—qaj

Then d(ur+su)=d(
cx—az+ra+te rb—ta

3 0 —ay —bw— pb+qa
Nex—az+ra+tc 0

and d (u)r +ud (r)+d (s)u +sd (u) =
B A0 e R ) cHARCR)

_(—bz+bz—qc+qc —-bw—ay + ga — pb j

cx—az+ra+tc cy—cy+rb—rb
—ay —bw+qu —gb
cx—az+ra+te 0
Thus d(ur+su) ( )r+ud( )+d(s)u+sd(u),forallueU,Vr,seR.

So d isa (U, R)— derivation.

We need the following Lemmas due to Faraj, C. Haetinger and H.
Majed [8] for proving our results.

Lemma 3.1: Faraj, C. Haetinger and H. Majed [8]. Assume R is a
2-torsion-free ring with d being (U,R)-D of R. Then
d(uru)=d(u)ru+ud(r)u+urd(u), forall ue U, reR.

Lemma 3.2: Faraj, C. Haetinger and H. Majed [8]. Assume R is a prime
ring, char (R)#2, and U is a closed square, R’s Lie Ideal and d be
(U,R)—D of R .Formerly (112, T)=0, forall ueU, reR

Lemma 3.3: Faraj, C. Haetinger and H. Majed [8]. Suppose that R be a
prime ring, char (R) # 2 be anonzero allowable Lie ideal of R, and U be

anonzero admissible Lie ideal of R. Then R’s nonzero ideal is contained
in U.
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Lemma 3.4: Faraj, C. Haetinger and H. Majed [8]. Suppose that R be a
prime ring, char (R)#2, and U ¢ Z(R) exist Lie Ideal. At that time

there be elements a,b,c € U such that [a,b,c]=abc—cba =0

Lemma 3.5: Faraj, C. Haetinger and H. Majed [8]. Assume R is a prime
ring, char ® # 2 be a nonzero allowable Lie ideal of R. At that time for

several teR, iftv> + v’t=0, forall veU,t=0
Proof: Linearize v +v*t=0 on v, then
t(uv2 + vzu) + (uv2 + vzu)t =0
Since tv* =—v’tVveU, so the above equation becomes
0=tuv’ —vtu —utv’ +vtu
=(tu —ut)v2 —? (tu —ut) =0 0r,[t,u]v2 - [t,u] =0
or,—v* [t,u] —? [t,u] =0 or, LV [t,u] =0 or, [Z,u] =0 If we
linearize tv* =0 on v,then0=t(u+v)2 =t(u2 +uv+vu +v2)=t(uv+vu)

= (uv + vu)u = tuvu = tuvut = (tu)v(tu),Vu,v eU,VteR. As U holds a
nonzero R ideal, and R be a prime, so tu=0.

Inprimness of R, we get £=0.

Faraj, C. Haetinger and H. Majedextend ([3, Theorem] to (U,R)
derivations in the following way:

Theorem 3.1:Assume R is a 2-torsion-free ring with d being (U,R)—-D
of R.Then d(uru)=d(u)ru+ud(r)u+urd(u), forall ueU, reR.

Proof. Then d be a (U, R) derivation of R.

d(uur+uru)=d(u)ur+ud(ur)+d(ur)u+urd(u). (6)
On the other hand,

d (wur +uru)=d (u’r )+ d (uru)

=d(u’r)+d(u)ru+ud (r)u+urd(u). @)
Now by using Lemma 2.4, equation (7) becomes
d(uzr +uru) = al(u2 )r +uld (r)+d(u)ru+ud (r)u+urd (u)

= d(u)ur +ud(u)r + u2d(r) + d(u)ru +ud(r)u + urd(u). (8)
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By comparing (6) and (8), we get
u(l)(u,r)+CD(u,r)u:0,VueU,reR. )
By linearizing (9) on %, we have

u(l)(v,r)+vCD(u,r)+CD(u,r)v+CD(v,r)u=O. (10)

Replace v by v’ in (10), then and there by Lemma 2.4, we get
v2®(u,r)+®(u,r)v2 =0, forall 4, veU, reR.

Currently, if U & Z(R) then and there by using Lemma 2.7, we become
q)(u,r) =0, forall ueU,reR.

Generalized (U, R) derivaion
By establishing that if R is a prime ring, char(R)=2, U is a square

closed Lie ideal of R, Faraj, C. Haetinger, and H. Majed [8] develop and
analyze the concept of generalized (U,R)-derivation. then

f(””)zf(”)’”rud(f”), forall ueU, reR.

Definition: Suppose that, U be a Lie ideal of a ring R and f be an
additive mapping R into itself. Then f is said to be a generalized

(U,R)-derivation (G(U,R) - D, for short) of R if there existsa (U,R) -

derivation d of R such that f(ur+su)=f(u)r+ud(r)+ f(s)u+sd(u),
forall ueU,V r,seR .

Example. Assume R is a ring containing all 2x2 matrices over a

a b
commutative ring S. Assume U = {( b aj ra,be S}

a b a 0
Then Uis R’s Lie ideal. Express f:R— R in f[(c d]]z(o —dj for

a b
all [c a’] € R . Formerly there is a (U ,R)- derivation 4 of R which is

a b 0 -b a b
definite by ¢ e 41T\ o |forall e d €R.

Then f is a derivation of R that is generalized (U,R).

b
Letuz[a ]eU rz(x yJeR S:(p q]eR
b a z w rot
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ax+bz+ pa+qgb ay+bw+ pb+qga
Then f(uHsu):f( pa+gqb ay p qj

bx+az+ra+th by+aw+br+ta

_(ax+bz+ pa+qb 0
0 —by —aw—br —ta

and [ (u)r+ud(r)+ f(s)u+sd(u)=
FIY G O W Y (A ) ()

ax+bz+ pa+qb ay—ay+ pb— pb
—az+az—th+tb —by—aw—br—ta

ax+ bz + pa+qgb 0
( 0 —by—aw—br—taj
Thus f(ur+su)=f(u)r+ud(r)+f(s)u+sd(u), for all
ueU,V r,seR So, f isageneralized (U, R)derivation of R.
Lemma 4.1 [5, Lemma 4]. Consider R to be a prime ring. char (R)#2
Then U isa R’sLieideal, U ¢ Z(R) Uncertainty 4,0 € R then aUb=0
then either a=00rb=0.
Remark: If f is a generalized (U ,R) derivation of R for each
ueU,reR authors signify &(u,r) the part of R definite in
5(u, r)=f(u)r+ud(r), forall ueU, reR.
Lemma 4.2:Consider R to be a prime ring, char (R) %2, Uisaallowable
Lie ideal of R and f be a general (U,R)derivation of R. Formerly
§(u,v)=0, for all u,veU.
Theorem 4.1. Consider R to be a prime ring, char(R)#2, U is a square
secure Lie ideal of R and f be a generalized (U,R) derivation of R.
Formerly f(ur)=f(u)r+ud(r), forall ueU, reR.

Proof. Since above Lemma 4.2then the previous Statement, we have
5(u,v)=0, Yu,veU. 1)

Replacing v by ur —ru in (1), then we get
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0=5(u,ur —ru)

= f(’r) = £ (wru) = f (u) (ur = ru) = ud (ur - ru).
Since d be a (U,R) derivation of R, so

f(w'r)=f (u)ur+ud (u)r+ud(r) @)
Now, let x =uur +uru. Then in the characterization of general (U,R)
derivation of R, [ (x)=f(u)ur +ud (ur)+ f (ur)u+urd (u)

= f(u)ur+ud (u)r+u’d(r)+ f (ur)u+urd (u) (3)
On the other hand, we have

f(x)=f(uw’r)+ [ (uru)

= f(u)ur +ud(u)r +u2d(r)+ f(u)ru +ud(r)u +urd(u) )
Comparing (3) and (4), we get

5(u,r)u=0, YueU,reR. )

Linearizing (5) on u, we get

5(u,r)v+5(v,r)u=0. ©)

Replace v by v* in (6).
Since 8(u”,7)=0, then
é‘(u,r)v2 =0, Yu,veU,reR. @)

Uncertainty U is a significant Lie ideal;formerly &(u,r)=0, for all

ueU, reR. Uncertainty U is non central, then change v by u +v now
equality (7) to become & (u,r)vu =0, forall u,veU,r€R.

Since U benon-centrally, then and there §(u,r)=0, forall u€U,r€R.
Main Results

We now apply the basic conclusion of [15] to the square closed Lie
ideal, using a generalized (U, R)-derivation of R. The next two lemmas
(already established) are required to achieve the chosen results.
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Lemma 5.1 (J. Bergun, I. N. Herstein and J. W. Kerr[5], Lemma 4)
Suppose that U ¢ Z(R) is a Lie ideal of a 2-torsion allowed prime ring

R then a,b € R such that aUb =0, at that point a=0 or b=0.

Lemma 5.2 (J.Bergun, I. N. Herstein and J. W. Kerr [5], Lemma 5)
Assume U #0 is a Lie ideal of a 2-torsion allowed prime ring R then
d #0 a derivation of R such that d(U)=0. At that point U < Z(R).

The next suitable outcome plays asignificant part to influence the
objective.

Lemma 5.3 Uncertainty U #0 be a Lie ideal of a 2-torsion allowed
prime ring R such that [U,U]=0, at that point U c Z(R).

Proof: For all u €U and x € R, we require
[u[u, x]]=0 (1)
Replacing x by xy with y € R, we obtain
0=[u, [, ]+ [, ] ]
= [, ]+ [t 0 T [t ]ty ]+ [l 6]
=2[u,x|u, y]
Then R be 2-torsion free, we become
[, x]u,y] =0 (2)
Such that u €U also x,y€R.
Placing yz used for y in (2) with z € R, then by (2), we get
[u,x]y[u,z]=0 forallueUand x,y,z € R

Thus, we have [u,x] R [u,z] =0

So, u,x] =00r[u,z]=0 i.e ueU also X,Z€R (in the primness of R).
Now equally the cases, we get that U = Z(R).

We may now demonstrate our major finding in the following manner.

Theorem: Condition U #0 is a closed square Lie ideal of a 2-torsion
free prime ring R then f is a comprehensive (U, R)-derivation of R,

at that point
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(i) f Actions as per a homomorphism proceeding U = either f =0
or UcZ(R).

(ii) f actions as per an anti-homomorphism proceeding U = either
f=0orUcZ(R).

Proof: There exists a (U,R)-derivation d of R such that f is a

generalized (U, R)-derivation of a 2-torsion free prime ring R, where

U is a square closed Lie ideal of R.

f(ur)=f(u)r+ud(r), forall ueU, reR (1)
ang dwr)=d(u)r+ud(r), . ueU,reR @)
Replacing r and s by (2u)r+r(2u) in (1), and denote w by
u((2u)r+r(2u))+((2u)r+r(2u))u, then
S (w)=f(u((2) 7+ 7 (2u)) + ((2u) 7+ 7 (20) )u)

=2( f (u)(ur +ru)+ud (ur + ru)u+ f(ur+ru)u+(ur+ru)d(u)

=2(f () (ur +ru)+u(d(u)r+ud(r)+d(r)u+ud(u)+

2(( (u)r+ud(r)+ f(r )u+rd(u))u+(ur+ru)d(u))

On the other hand
S (w) =1 (u((20) 7+ r(2u)) + ((2u) 4+ 7(20) Ju)

= f((207)r+r(207))+ 41 (uru)

= f(2u?)r+(207)d (r)+ £ (r) (207 )+ rd (26 )+ 4 (ru)

=2(f (u)ur +ud (u)r+u’d (r)+ f (r)u’ +rud (u)+rd (u)u)+ 4 f (uru)

Comparing above two relations and Using R’s 2 torsion freeness, we
become

f(uru)zf(u)ru+ud(r)u+urd(u) 3)

Now linearizing (3) with respect u, we get

f(urv+vru) = f(u)rv+ud(r)v+urd(v)+f(v)ru + vd(r)u + vrd(u) (4)
Let x= 4(uvwvu + vuwuv), then by (3)

f(x) = f((2uv)w(2vu) + (2vu)w(2uv))
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= f(2uv) w(2vu) + (2uv)d(w)(2vu) + 2uvwd(2vu) +
f(2vu)w(2uv) + (2vu)d(w)(2uv) + 2vuwd(2uv)

On the other hand,
f(x) = f((2uv) w(2vu) + (2vu) w(2uv))
= f(u (4vwv)u + v(4uwu)v)

= f(u)(4vwvu) + ud(4vwv)u + 4uvwvd (u) + f(v)(4uwuv) +
vd (4uwu)v + 4vuwud (v)

Comparing the exact sides of f(x) and then d is a (U,R) derivation
of R, thus

0=4(5(u,v)wvu+5(V,u)wuv+uvaD(v,u)+vuwd)(u,v))
=4(5(u,v)w[u,v]+[u,v]w<l)(u,v))
Then R be a 2-torsion-free and through Theorem 3.1, we need

6 (u,v) w[u,v] =0. then U be a non-centrally Lie ideal, at that point by
Lemma 4.1,

5(u,v)=0, for all u,veU.
Replacing v by ur —ru in §(u,v)=0, we get
O=5(u,ur—ru)

=f(u2r)—f(uru)—f(u)(ur—ru)—ud(ur—ru).
Since d be a (U ,R) derivation of R, so
f(uzr)=f(u)ur+ud(u)r+u2d(r)

Now, let x =uur +uru. Then by the definition of generalized (U ,R)
derivation of R, f(x) = f(u)ur +ud (ur) + f(ur)u + urd (u)
= f(u)ur +ud (u)r +u’d (r) + f(ur)u +urd (u)
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On the other hand, we have
f(x) =f(u2r) + f(uru)
=f(u)ur + ud (u)r +u2d(r)+f(u)ru +ud(r)u +urd (u)

Comparing right hand sides of f'(x), we get
6(u,r)u=0, YueU, reR

Linearizing with respect to u, we get & (u,r)v+&(v,r)u=0
Replace v by v’
Then ¢ (MZ o ) =0, at that point

5(u,r)v2 =0, Yu,veU,reR
Uncertainty U is an essential Lie ideal, then &(u,r)=0, for all
ueU, reR. If U is non central, then change v by u +V to get
&(u,r)vu=0, forall u,veU,reR.

Since U is non-central, then &(u,r)=0, for all #u€U,r€R and

consequently f(ur)= f(u)r+ud(r), forall ueU, reR.

If U is not contained in Z(R) then U & Z(R)

Then U be a square closed Lie ideal, we need
w+vu=(u+v)(u+v)—u’ —v' €U forallu,veU.

Also, we get uv —vueU forall,u,veU

So, 2uveU forall u,velU .

Thus, 4(uvw)=2(2uv)weU forall 4,v,weU

If f actions as per a homomorphism on U, at that point we get
f(4uvw) = f(2(2uv) w) = 4f(uv) w+ 4uvd (w)
=4(f(u)f(v)w+uvd(w)), forall u,v,wel )

On the other hand,
f(4uvw)=f(2u)2vw))=4f(u)f(vw)
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=4(f(u)f(v)w+f(u)vd(w)),Vu,v,weU (6)

When we multiply (5) and (6) by R’s 2-torsion freeness, we become
f(u)vd (w) = uvd(w),
Then it becomes

(1 () w)sd (w) =0, VuvoweU.
Thus, we have (f(u)—u)Ud(w)=0 forall u,weU
Now opinion of Lemma 5.1, we achieve that

f(u)~u=0 forall ueU or d(w)=0 forall weU
If d(w)=0 forall weU, at that point by Lemma 5.2, we need d =0 or
UcZ(R).
Since U ¢Z(R), we get d =0.
On the other hand, if f(u)-u=0 forall u€U, then we have
f(u)zu, YueU.

Replacing # by 2uv for veU and using the 2-torsion freeness of R, we
get
uv=f(uv)=f(u)v+ud(v)=uv+ud(v) for all u,veU .

So, we need ud (v)=0 for all ,v€U Consequently, Ud(v)=0 for all
veU.

Then [U,R]<U, we get [U,R]d (v)=0 forall veU.

So, URd (v)=0 forall veU.

As U #0 and R is a prime ring, we have d(v)=0 forall veU.
Thus, by Lemma 5.2, we get U = Z(R).

Let us suppose the f acts as an anti-homomorphism on U . Then we

have
f(u)v+ud(v)=f(v)f(u)=f(uv),Vu,veU (7)
We get (7) by substituting 2uv for u in (7) and using (7).
uvd(v)zf(v)ud(v), Vou,velU (8)

Substituting 2wu for u in (8), we get



Generalized Derivations Acting as Homomorphismand ... 77

wuvd (v) = f(v) wud (v), Yu,velU
Multiplying (8) by w on the left, we have
wuvd(v) = wf(v)ud (v) , for all u,velU
Comparing above two relations, we get
[w,f(v)]ud(v) =0, VuvelU
Now opinion of Lemma 5.1, we become
[W, ] Oforallv,werrd( ) 0 forallvelU .
If d ( )=0 for all veU, at that point by Lemma 5.2, we invention
d=0 or UcZ(R), and therefore d =0. ThenU¢Z(R)
On the other hand, if [w, f (v)] =0
For all #,veU , then Changing v by 2w, we need
v[w,d (w)]+[w,v]d(w)=0, Vu,veU

Again, substituting 2uv for V€U, and by 2-torsion freeness of R, we
become

Ozuv[w,d w] [w,uv]d( )
=uv[w, ]+u[w,v]d( )+[w,u]vd(w)
=u(v[w,d w ]-l—[w,v]d )) [w,u]vd(w) =[w,u]vd(w)

Thus, we obtain [w,u|Ud (w)=0, V u,veU
Applying Lemma 5.1, we find that
d(w)zO,V welU  or [w,u]zO, u,welU

If [w,u]=0 for all #,weU , In the opinion of Lemma 5.3, at that point,
it follows that U < Z(R), which is a conflict to the fact that U ¢ Z(R).
Thus, we need d(W) =0, VwelU .

Inby Lemma 5.2, we have d =00rU cZ (R) .

Then U & Z(R), we complete that d =0

As a result, if U #0 is the square closed Lie ideal of a 2-torsion free
prime ring R, and f is the generalized (U, R)-derivation of R,
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(i) f Actions as per a homomorphism proceeding U = either f =0
or UcZ(R).

(ii) f actions as per an anti-homomorphism proceeding U = either
one f=0 or UcZ(R).
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